韓國產 씀바귀屬의 細胞分類學的 研究

金 完 泰•高 聖 哲
（暲南大學校 生物學科）

A cytotaxonomic study on genus Ixeris in Korea

Wan Tae Kim and Sung Chul Ko
（Department of Biology，Han Nam University，Taejeon 300－791，Korea）

Abstract

Chromosome numbers and karyotypes of five Korean Ixeris，I．dentata，I．repens，I． japonica，I．polycephala，and I．stolonifera were examined and taxonomic implications of these were discussed．

The basic chromosome number of them was two kinds， $\mathrm{x}=7$ and 8．I．dentata，triploid as $2 \mathrm{n}=21$ ，falls under $\mathrm{x}=7$ ．I．repens，I．polycephala，I．stolonifera，and I ．japonica come under $\mathrm{x}=8$ ，and 3 species of them except I ．japonica are diploids as $2 \mathrm{n}=16$ and I ．japonica is a hexaploid as $2 \mathrm{n}=48$ ．

From the cytotaxonomical point of view，I．dentata of $x=7$ is thought to have different evolutionary way from the species of $\mathrm{x}=8$ group．Within $\mathrm{x}=8$ group，I．japonica seems to be derived from I．stolonifera as the relative length，the chromosome numbers and the form percentages of both species were compared．

In addition，I ．stolonifera and I ．repens are thought to be close related species judging from the confirmity of chromosome number and karyotype $<2 \mathrm{n}=16=1(2) \mathrm{L}+7(14) \mathrm{S}>$ bas－ ed on relative length，and the similarity of chromosomal size range and total length between them．But from their habitats and chromosomal form percentage I ．repens is considered to be more primitive than I．stolonifera．

緒 論

국화科（Compositae）에 속하는 씀바거屬（Ixeris Cass．）은 세계적으로 주로 동아세아（韓國，中國，日本 등）에 分布하는데 약 20 여종이 알려져 있으며（Li et al．，1978；Ohwi，1984），수 직적으로는 海岸 또는 낮은 山野에서 高山地帶에 이르기까지 그 分布가 다양하여 種內에서도 심한 形態的 變異를 보인다．
Cassini（1821）에 의해서 I．polycephala Cass，의 외부형태학젹 톡징이 기재되면서 처음 設定되었고，Ixeris燭에 대한 分類學的 位置는 오늘에 이르기까지 많은 rank상의 변화률 겨었 다（Bentham and Hooker，1873；Nakai，1920；Kitamura，1955；Tzvelev，1964；Pak，1990）．즉 Bentham and Hooker（1873）는 瘦果의 압착에 근거하여 Chorisma屬과 함께 本 屬을 Lactuca犀內의 한 節로 취급한 바 있고，Nakai（1920）는 瘦果의 모양과 줄기의 습성，뿌리와根生葉의 모양 등에 근거해서 Ixeris燭을 峓意로 보아 Ixeris，Crepidiastrum 및 Paraixeris의 3閩으로 分離•再整理하였다．그러나 이러한 見解들에 대해 Stebbins（1937）는 Ixeris屬을 Lactuca屬과는 전혀 다른 명백한 飽으로 보고 Nakai（1920）의 위 3屬을 각각 Ixeris屬內의 3亞抣—subg．Crepidiastrum，subg．Paraixeris，subg．Euixeris로 格下시켰다．이에 대해 Kitamura（1955，1956）는 Crepidiastrum 과 Euixeris（Ixeris sensu Kitamura）亞屬을 명백한屬으로서 인정하고 Paraixeris 를 Youngia屬에 편입시켰다．
韓國產 Ixeris屬에 관하여 Chung（1957）은 I．chinensis subsp．strigosa를 I．chinensis로， Lactuca debilis를 I．nipponica로，Lactuca sonchifolia를 I．sonchifolia로 각각 처리하고，그 밖에 I．dentata，I．polycephala 및 I．repens를 보고하여 총 6 種을 記載하였으며，또한 Lee（1976）는 줄기의 습성과 꽃색，그리고 잎의 형태를 근거로 I．chinensis，I．japonica， I．stolonifera의 3種을 記載하였다．그리고 가장 최근의 資料로서 Lee（1985）는 위의 分類群 에 I．dentata var．albiflora 및 I．dentata var．amplifolia，I．tamagawaensis의 1種 2變種管 추가하면서 I．chinensis률 I．chinensis var．strigosa로 격하시켜 6種 3 變種을 發表하 였다．이상으로 볼 때 韓國産 Lxeris屬（s．1．）은 現在까지 9分類群이 알려져 있다．

本 研究는 위 9分類群중에서 I．dentata，I．japonica，I．polycephala，I．repens，I． stolonifera의 5 種을 대상으로 하여 이들의 染色體數와 核型을 밝히고자 하며，이를 근거로 이들 分類群間의 가능한 범위의 類緣關係를 추구하고자 한다．

本 風经 基本 染色體數는 Ishikawa（1916，1921）에 의해서 $\mathrm{x}=7$ 과 8 로 밝혀진 바 있으나 대부분이 $\mathrm{x}=8$ 이고，I．dentata group에서는 $\mathrm{x}=7$ 이 一般的인 것으로 알려져 있다．특히 ㅂ本產 I．dentata group에 대해서는 Takemoto（1952），Nishioka（1956，1960，1963），Pak and Kawano（1990）等에 의해서 細胞學的 研究가 이루어져𧰨으며，Takemoto（1952）는 I ． stolonifera와 I．japonica의 細胞學的 比較 研究를 시도한 바 있다．이밖에도 Chuang et al． （1962）은 台灣產에 대하여 細胞學的 研究量 시도하였고，Ono（1962）와 Kitamura et al． （1980）은 일본산 Ixeris属의 6 種 1 亞種에 대한 形態學的 및 細胞學的 特敬을 報告한 바 있으 며，가장 최근에는 Pak and Kawano（1990）가 일본산，한국산 및 대만산의 11 種 5 亞種을 대 상으로 핵형분셕을 시도한 바 있다．

Table 1．Collection data of Ixeris species under study

Species（Korean name）	Locality	Collector
I．dentata Nakai（씀바귀）	Taeduk，Taejon City	W．T．Kim
I．repens A．Gray（갯씀바귀）	Jinwoodo，Kyongsangnam－do	W．T．Kim
I．japonica Nakai（벋은쏨바거）	Nonsan，Chungchongnam－do	W．T．Kim
I．polycephala Cass．（별씀바귀）	Taeduk，Taejon City	W．T．Kim
I．stolonifera A．Gray（좀씀바귀）	Ojungdong，Taejon City	W．T．Kim

材料 및 方法

材 料
實験材料는 1988년 4月부터 1989年9月 사이에 探集한 것으로 韓南大學校 温室에 移植栽培 하여 완전히 성장된 個體를 사용하였다．本 寅驗에서 사용된 재료는 乾燥標本으로 만들어 韓南大學校 自然史博物館에 證據標本으로 보콴하였으며 재료와 채집지는 Table 1과 같다．

方 法

染色體의 觀察은 各 種에서 根端을 5 mm 정도 취하여 0.002 M 8－hydroxyquinoline액에 $18^{\circ} \mathrm{C}$ 에서 $3-5$ 시간 前㮰理한 다옴 1 N HCl 과 45% acetic $\mathrm{acid}(1: 2)$ 혼합액으로 $60^{\circ} \mathrm{C}$ 에서 13－15분간 加水分解시킨 것을 1% aceto－orcein으로 염색하여 squash preparate를 만들어 관 찰하였다．

染色髅는 그 크기와 형태에 따라 配列하였고，染色體의 상대적 길이（Relative length＝R． L．）가 1.14 이상인 것을 Long（L．）， 1.13 이하인 것을 Short（S．）로 처리하였고，動原體의 위치는 Tatuno and Yoshida（1966）의 방법에 따라 Form percentage（ $\mathrm{F} \%$ ）가 $45-50 \%$ 인 것 을 metacentric（m．）， $32-44 \%$ 인 것을 submetacentric（sm．）， $12-31 \%$ 인 것을 subtelocentric chromosome（st．）으로 구분하였다．

結 果

 Short（S．）로，그리고 $\mathrm{F} \%$ 에 근거해서 각각의 染色骾邕 分類하였던 바 다음과 같은 核型들이觀察되었다．

Type
Long（1．14 and more）
Type A^{\prime} Metacentric chromosome with secondary constriction．
Type B Submetacentric chromosome．
Type B＇Submetacentric chromosome with secondary constriction．
Short（1．13 and less）
Type C Metacentric chromosome．
Type D Submetacentric chromosome．
Type E Subtelocentric chromosome．
Type $\mathrm{E}^{\prime} \quad$ Subtelocentric chromosome with secondary constriction．
取扱된 5 種 각각에 대한 構成核型은 아래와 같고 그 특징은 Table 2 와 같다．
（1）I．dentata： $2 \mathrm{n}=21=1$（3） $\mathrm{L}+6(18) \mathrm{S}=\mathrm{A}^{\prime}{ }^{\mathrm{m}}+\mathrm{C}_{6}{ }^{m}+\mathrm{D}_{9}{ }^{\mathrm{sm}}+\mathrm{E}_{8}{ }^{\text {st }}$
（2）I．repens： $2 \mathrm{n}=16=1(2) \mathrm{L}+7(14) \mathrm{S}=\mathrm{B}_{2}{ }^{\mathrm{sm}}+\mathrm{C}_{4}{ }^{\mathrm{m}}+\mathrm{D}_{10}{ }^{\mathrm{sm}}$
（3）I．japonica： $2 \mathrm{n}=48=1$（6） $\mathrm{L}+7(42) \mathrm{S}=\mathrm{B}_{6}{ }^{\mathrm{sm}}+\mathrm{C}_{6}{ }^{\mathrm{m}}+\mathrm{D}_{36}{ }^{\mathrm{sm}}$
（4）I．polycephala： $2 \mathrm{n}=16=1(2) \mathrm{L}+7(14) \mathrm{S}=\mathrm{B}_{2}{ }^{\mathrm{sm}}+\mathrm{D}_{10}{ }^{\mathrm{sm}}+\mathrm{E}_{2}{ }^{\mathrm{st}}+\mathrm{E}_{2}^{\prime}{ }^{\text {st }}$
（5）I．stolonifera： $2 \mathrm{n}=16=1(2) \mathrm{L}+7(14) \mathrm{S}=\mathrm{B}_{2}^{\prime}{ }^{\mathrm{sm}}+\mathrm{C}_{2}{ }^{\mathrm{m}}+\mathrm{D}_{12}{ }^{\mathrm{sm}}$

考 察

조사된 5種중 I．dentata는 基本數量 $7(\mathrm{x}=7)$ 로 하는 계열이고 나머지 4 種은 基本數邕 $8(x=8)$ 로 하는 계열로서 이는 기존의 연구결과（Ishikawa，1916，1921；Takemoto，1952； Nishioka，1956）와 일치하였다（Table 3）．이들 중 I．dentata는 $2 \mathrm{n}=21$ 로서 3 배수성 식물 （Fig．6）이며，I．japonica는 $2 \mathrm{n}=48$ 로서 6 배수성 식물이고，나머지 3 種은 모두 $2 \mathrm{n}=16$ 의 2

Table 2．Summerized karyomorphological features of the taxa investigated in this study

Taxa	1	2	3	4	5	6	7	8
I．dentata	21	$2.55-4.91$	3.66	$3(9)$	$3(9)$	$1(3)$	3	78.86
I．repens	16	$1.84-3.00$	2.45	$2(4)$	$6(12)$	-	-	39.24
I．japonica	48	$1.44-2.97$	2.05	$1(6)$	$7(42)$	-	-	98.54
I．polycephala	16	$2.21-3.46$	2.76	-	$6(12)$	$2(4)$	2	44.16
I．stolonifera	16	$1.83-3.47$	2.38	$1(2)$	$7(14)$	-	2	38.10

1：Chromosome number，2n；2：Size range in microns；3：Average chromosome length in microns；4： Number of metacentric chromosomal pair；5：Number of submetacentric chromosomal pair；6：Number of subtelocentric chromosomal pair；7：Number of chromosome with secondary constriction；8：Ab－ solute chromosome length in microns；The number in parenthesis means chromosomal number．

배수성 식물（Figs．7，9，10）이다．
體細胞 染色體数에 대한 본 연구결과는 전헤적으로 기존의 연구결과들과 일치하였으나 （Table 3），다만 I ．dentata에 있어서 $2 \mathrm{n}=14,24$ 및 28 의 個骾群은 本 研究에서 觀察되지 않았다．細胞分類學的인 側面에서 볼 때 本 調査에서 取扱된 分類群旨 중 I．dentata만은 $\mathrm{x}=7$ 系列로서 뿐만 아니라，染色體를 相對的 길이（Relative length）에 근거해서 보았을 때 1 （3）L +6 （18）S型으로서 따로이 區分되어지며，이는 Nishioka（1960），Ono（1962），Takemo－ to（1962）에서 지적되었던 것처럼 지역에 따른 倍數現象에 의한 䙪異體들（에：I．dentata var．albiflora，3倍數性；I．dentata var．alpicola， 2 倍數性；I．dentata var．amplifolia， 3倍數性）을 形成하면서 독자적으로 進化되어온 分類群으로 생각된다．이러한 結果는 분포，合

Table 3．Chromosome numbers of some Ixeris species

Species	Present study （2n）	Previous report（2n）\＆ Author	Locality
I．dentata	21	14 Chuang et al．（1962）	Taiwan
		21 Okabe（1934）	Japan
		Babcock et al．（1937）	
		Takemoto（1956）	Japan
		24 Ono（1941）	Japan
		28 Pak and Kawano（1990）	Korea，Japan
I．repens	16	16 Ishikawa（1921）	Japan
		Babcock et al．（1937）	
		Pak and Kawano（1990）	Korea，Japan
I．japonica	48	48 Ishikawa（1921）	Japan
		Takemoto（1952）	Japan
		Pak and Kawano（1990）	Korea，Japan
I．polycephala	16	16 Ishikawa（1921）	Japan
		Babcock et al．（1937）	
		Pak and Kawano（1990）	Korea
I．stolonifera	16	16 Ishikawa（1921）	Japan
		Babcock et al．（1937）	
		Ono（1941）	Japan
		Takemoto（1952）	Japan
		Kitamura et al．（1980）	Japan
		Pak and Kawano（1990）	Japan

성 및 과실에 관한 형질들에 근거하여 I．dentata를 포합하는 基本染色體數 $\mathrm{x}=7$ 의 계열을 Ixeridium）䖲（Tzvelev，1964）또는 Ixeridium節（Kitamura，1956）과 같은 독립둰 명백한 分類群으로 보려는 견해와 일치한다．

I．repens，I．japonica，I．polycephala 및 I．stolonifera의 4 種은 모두 基本染色䯈数가 $\mathrm{x}=8$ 이며 또한 染色體의 相對的 길이가 모두 $1 \mathrm{~L}+7 \mathrm{~S}$ 型으로 같아서 細胞分類學的으로 前者와 는 다른 系列로 생각된다．Takemoto（1952）에 의하면 이들 중 I．japonica는 I．stolonifera 에서 유래된 6倍數性 식물로 보았고，Pak and Kawano（1990）는 과실벽의 형질을 근거로 하 여 I．japonica가 I．stolonifera보다는 I．polycephala와 더 가까운 것으로 보았는데 本 研究 에서 韓國產을 對象으로 核型分析을 試臯한 結果，I．japonica는 $2 \mathrm{n}=48=1(6) \mathrm{L}+7(42) \mathrm{S}=$ $\mathrm{B}_{6}{ }^{\mathrm{sm}}+\mathrm{C}_{6}{ }^{\mathrm{m}}+\mathrm{D}_{38}{ }^{\mathrm{sm}}$ ，I．stolonifera는 $2 \mathrm{n}=16=1(2) \mathrm{L}+7(14) \mathrm{S}=\mathrm{B}_{2}^{\prime}{ }^{\mathrm{sm}}+\mathrm{C}_{2}{ }^{\mathrm{m}}+\mathrm{D}_{12}{ }^{\mathrm{sm}}$ 으로 상대적 길이에 의하 構成 染色骾數에 있어서 核型別（Type $\mathrm{B}, \mathrm{C}, \mathrm{D}$ ）의 3 倍數性이 일치하였고，다만
 Kawano（1990）는 부수체⿱⿱日一⿻日土灬⿸丆口⺕ 발견했으나 본 연구와 Takemoto（1952）는 부수체를 발견할 수 없었다．또한 같은 한국산을 대상으로 했던 Pak and Kawano（1990）는 I．japonica에서 Leven et $a l$ ．（1964）의 방법에 따라 $2 \mathrm{n}=36$ median chromosome +12 submedian chromosome으로 밝힌 바 있으나．Tatuno and Yoshida（1966）의 방법에 의한 본 연구결과 에서는 $2 \mathrm{n}=6$ metacentric chromosome +42 submetacentric chromosome으로 밦혀졌다．外部形態學的인 톡징에 있어서 두 種은 葡莮葉을 갖는다는 共通點 外에도 Takemoto（1952）의比較에서 지적한 바와 같이，잎이 부드렵고 膜質인 점과，頭狀化，舌狀化 및 㾇果解 모양 等 에서 서로 비슷하나，全體的인 外部形態에 있어서 I．japonica는 I．stolonifera 보다 다소 크다．따라서 두 種間의 核型分析 結果는 Takemoto（1952）의 견해대로 I．japonica는 I ． stolonifera에서 유래된 6 배수성 식물로 생각된다．한편 I．repens와 I．stolonifera는 匍甸性 줄기를 갖고 있다는 形態學的인 共通點 外에도 核型分析에 있어서 두 種이 서로 비숫하였다 （Table 2）．즉 두 種은 體細胞 染色體數가 $2 \mathrm{n}=16$ 으로 같으며，크기의 範圍에 있어서 前者 는 $1.84-3.00 \mu \mathrm{~m}$ ，後者는 $1.83-3.47 \mu \mathrm{~m}$ 로 對等하며，두 種 모두 metacentric과 submetacen－ tric chromosome만으로 구성되어 있는데 이것은 Pak and Kawano（1990）의 연구결과와 일 치하며，染色體의 相對的 길이에 있어서도 $2 \mathrm{n}=1(2) \mathrm{L}+7(14) \mathrm{S}$ 로 두 種이 같은 系列로 分類 되었다．뿐만 아니라 染色體 길이의 總和에 있어서도 前者는 $39.24 \mu \mathrm{~m}$ ，後者는 $38.10 \mu \mathrm{~m}$ 로 서로 對等한 數値量 보이고 있음을 酭察할 수 있었다．그러나 棲息地에 있어서 I．repens는海岸의 모래땅에，I．stolonifera는 보통 들에서 生育하고 있으며，核型에 있어서 I．repens 가 Type C의 對稱形 染色體를 1 變 더 많이 가짐으로써（Table 2）細胞學的으로 매우 안정된核型을 가지며 分化度가 낮은 것으로 판단되며（Mehra and Sachdeva，1976；Stace，1985）， 한국산 I．stolonifera의 핵형은 본 연구에서 처음 밝혀진 것이다．이상과 같은 細胞學的 및生態學的 特徵들을 比較하여 볼 매 I．repens와 I．stolonifera는 아주 밀접한 類緣關係를 갖 지만 I．repens가 다소 原始的인 分類群으로 생각된다．

摘 要

韓國産 Lxeris䖲绊 I．dentata，I．repens，I．japonica，I．polycephala，I．stolonifera 5分類群에 대한 體細胞 染色體數와 核型分析욜 통하여 細胞分類學的 研究量 하였다．
이들 分類群들은 基本染色骾數에 있어서 $\mathrm{x}=7$ 과 8 로 나타났으며， $\mathrm{x}=7$ 系列은 I ．dentata 로서 體細胞染色髏數가 $2 \mathrm{n}=21$ 의 3 倍數性 植物이고， $\mathrm{x}=8$ 系列은 I ．polycephala，I ． stolonifera와 I ．japonica이다． $\mathrm{x}=8$ 系列 중 I ．japonica률 제외한 3 種은 $2 \mathrm{n}=16$ 의 2倍數性植物이고，I．japonica는 $2 \mathrm{n}=48$ 의 6 倍數性 植物이었다．

細胞分類學的 側面에서 볼 때 $\mathrm{x}=7$ 系列인 I ．dentata는 독자적인 進化系列을 밟은 것 같 고， $\mathrm{x}=8$ 系列의 I ．japonica는 染色體의 相對的 길이와 體細胞의 染色骾數 그리고 Form percentage（ $\mathrm{F} \%$ ）에 따른 構成染色體의 核型別 倍數性 및 外部形態學的 特徵으로 볼 때 I ． stolonifera에서 由來된 種으로 制断된다．
또한 I ，repens와 I．stolonifera는 染色體 길이의 범위 및 總和의 類似性，染色體數와 相對的 길이에 따른 抟型〈 $2 \mathrm{n}=16=1(2) \mathrm{L}+7(14) \mathrm{S}\rangle$ 의 一體性으로 볼때 매우 沂緣의 種들로 생 각되고 $\mathrm{F} \%$ 에 의한 核型 및 그 生態學的 棲息䍗境으로 볼먜 I．repens가 더 原始的인 것 같 다．

引用文獻

Babcock，E．B．，G．L．Stebbins，Jr．and J．A．Jenkins，1937．Chromosome a．phylogeny in some genera of the Crepidinae．Cytologia，Fujii jub．Vol．：188－210．
Bentham，G．and J．D．Hooker．1873．Genera Plantarum．ii．Pt．1，526pp．cited from Stebbins（1937）．
Cassini．H．1821．Dict．Sci．Nat．XXIV． 49.
Chung，T．H．1957．Korean Flora．Shinjisa，Seoul．pp．746－749．
Chuang，T．I．，C．Y．Chao，W．L．Wilme and S．C．Kwan．1962．Chromosome numbers of the vascular plants of Taiwan．Taiwania 1：51－66．

Darlington，C．D．and A．P．Wylie．1955．Chromosome Atlas of Flowering Plants．George Allen and Uniwin，London． 519 pp．
Ishikawa，M．1916．A list of the number of chromosome（A preliminary note）．Bot．Mag．Tokyo 30： 437－438． 1921．On the chromosomes of Lactuca．Bot．Mag．Tokyo 35：153－158．
Kitamura，S．1955．Compositae Japonicae．Pars Quinta Mem．Coll．Soc．Kyoto，Ser．B．Biol．22（1）： 77－126． 1956．Compositae Japonicae．Pars Quinta．Mem．Coll．Sci．，Kyoto Imp．Univ．，Ser．B，Biol． 23：116－123．cited from Pak and Kawano（1990）．
，G．Murata and M．Mori．1980．Coloured Illustration of Herbaceous Plants of Japan（I）． Hoikusha Publ．Co．，Ltd．279pp．
Li，H．L．，S．T．Liu，T．C．Huang，T．Koyama and C．E．Devol．1978．Flora of Taiwan．IV．Epoch Publ．， Ltd．，Taiwan．994pp．

Lee, Y.N. 1976. Illustrated Flora and Fauna of Korea. Vol. 18. Flowering Plants. Minist. Educ. 893pp.
Lee, T.B. 1985. Illustrated Flora of Korea. Hyangmoonsa, Seoul. 990pp.
Mehra, P.N. and S.K. Sachdeva. 1976. Cytological observations on some W. Himalaya monocots. V. Araceae. Cytologia 41: 55-61.
Nakai, T. 1920. Notulae ad plants Japonicae et Koreae. 23. Bot. Mag. Tokyo 34: 141-158. Nishioka, T. 1956. Karyotype analysis in Japanese Cichorieae. Bot. Mag. Tokyo 69: 586-592.
\qquad 1960. Phylogenetic study in the Ixeris dentata Group. I. Hybridization between the alpine and seashore plants and some other observations. Bot. Mag. Tokyo 73: 431-438.
\qquad 1963. Phylogenetic study in the Ixeris dentata Group. II. General aspect of the Ixeris dentata group. Jap. J. Bot. 18: 199-223.
Ohwi, J. 1984. Flora of Japan. Smithsonian Inst., Washington, D.C. 1066pp.
Okabe, S. 1934. Über die Parthenogenesis bei Japanischen Pflanzen. Bot. Mag. Tokyo 48: 6-7.
Ono, H. 1941. Zytologische Studien an Cichorieae. III. Das Karyotyp und die Efrunchtungsweise von Ixeris dentata. Bot. Mag. Tokyo 55: 17. cited from Darlington and Wylie (1955).

\qquad
 1962. The chromosomes of Ixeris dentata Complex. Chrom. Inform. Serv. 3: 40.

Pak, J. H. and S. Kawano. 1990. Biosystematic studies on the genus Ixeris (Compositae - Lactuceae). II. Karyological analyses. Cytologia 55: 553-570.

Stace, C.A. 1985. Plant Taxonomy and Biosystematics. Chapman and Hall Inc. New York. 264pp.
Stebbins, $\mathrm{G}_{\text {. L. }}$ 1937. Critical notes on the genus Ixeris. J. Bot. 75: 43-51.
Takemoto, T. 1952. Comparative studies on Ixeris stolonifera (2X) and I. japonica (6X). Bot. Mag. Tokyo 65: 164-167.
\qquad 1956. Cytological studies on Taraxacum. IV. Jap. J. Genet. 31: 312-313.
1962. Cytological studies on Taraxacum and Ixeris. II. Some Japanese races of the Ixeris dentata complex. Biol. J. Okayama Univ. 8: 59-89.
Tatuno, S. and H. Yoshida. 1966. Kalyologische Untersuchung über Osmundaceae I. Chromosome der Gattung Osmunda aus Japan. Bot. Mag. Tokyo 79: 244-252.
Tzvelev, N.N. 1964. Flora URSS. 29: 388-401. cited from Pak (1991): Kor. J. Plant Tax. 21: 71-82.

Figures 1-5: Photomicrographs of the somatic chromosome.
Fig.1. I. dentata; Fig.2. I. repens; Fig.3. I. japonica; Fig.4. I. polycephala; Fig.5. I. stolonifera

Figures 6-10: Karyotypes of somatic chromosome.
Fig.6. I. dentata; Fig.7. I. repens; Fig.8. I. japonica; Fig.9. I. polycephala; Fig.10. I. stolonifera

10μ

