취나물속 (Genus Saussurea) 에서 보이는 비약적 종분화에 관하여
 임 혐 탁
 (전남대학교 자연과학대학 생물학과)

An instance of quantum speciation seen in Saussurea nipponica (Compositae)

Hyoung.Tak Im
(Department of Biology, Chonnam University, Kwangju 500-757, Korea)

Abstract

This study was designed to interpret the speciation process of Saussurea nipponica Miquel ssp. yoshinagae (Kitamura) Kitamura and ssp. hokurokuensis Kitamura. Among seven subspecies of S. nipponica, which is ecologically and geographically diversified polymorphic species, ssp. yoshinagae and ssp. hokurokuensis are distributed in serpentine region and heavily snowy coastal region respectively, and have peculiar morphological characters which can not be found in other five subspecies. On account of their characteristic appearance, they are still closely related to other five subspecies genetically. Above discordance between morphological and genetic differentiation is interpreted as a result of "quantum speciation". Ssp. yoshinagae and ssp. hokurokuensis were isolated from other populations of S. nipponica, and rapidly got high morphological differentiation within short period of time while adapting to peculiar environment such as serpentine or heavily snowy coastal region. Moreover, ssp. hokurokuensis is similar in some appearances to S. sugimurai Honda which also grows in heavily snowy region adjacently to ssp. hokurokuensis. The morphological similarity between apparently different two taxa, S. nipponica ssp. hokurokuensis and S. sugimurai, is considered to be the result of "convergent adaptation" to similar habitat.

[^0](Compositae)의 식물로서 약 380 좋 (Lipschitz, 1979)이 있다. 한반도에만 30 종 (이, 1980)이 보고 되어 있는데 몇몇 종(각시취, 큰각시취, 은분취, 버들분취, 당분취 등)을 제외한 많은 종의 지리적, 생태적 분포가 한정되어 있어 종분화의 연구대상으로 적합한 분류군이다. Saussurea nipponica Miquel은 일본의 Honshu, Shikoku, Kyushu에 걸쳐서 생육하고 있는 일 본고유종 (endemic species) 으로 해안절벽 $(5 \mathrm{~m})$ 에서부터 고산의 정상부근 $(1,900 \mathrm{~m})$ 까지 다양 한 환경에 적응분화한 식물이다. 일본의 기온이 지금보다 $7-8^{\circ} \mathrm{C}$ 정도 더 낮았던 시기 (Ulm빙 기가 끝나는 10,000 년전까지)에는 그 분포가 보다 연속적이었으나, 지금은 특히 서남지역에 있어서 그 분포가 한정되어 지리적, 생태적으로 격리되어 있는 것으로 추정된다(Kitamura, 1950b : Im, 1988).
1983년 부터 1988년 까지의 형태적 및 분자생물학적 연구결과 (Im, 1988), S. nipponica는 지리적으로 격리된 7아종으로 이루어진 다형종(polymorphic species)으로 인식되었다(Fig. 1). 이 7 아종들은 형태적, 유전적으로 분화되어 있음이 판명되었는데, 이는 종래의 형태적 특징에 주로 근거한 분류학적 견지와는 몇군데 상이한 점을 가지고 있다. 그 중에서도 특히 S. nipponica ssp. yoshinagae와 ssp. hokurokuensis 의 두 아종은 외부형태가 특수하게 분화되 어 있어서 연구자에 따라서는 별종으로 다루어 와⼣던 분류군들이나, 기실 그들의 유전적 분화 는 프다지 진행되지 않았음이 밝혀졌다. 본연구의 목적은 S. nipponica의 두 아종에서 보이 는 형태적 분화와 유전적 분화의 상이점을 종분화의 관점에서 설명하는데에 있다.

재료 및 방법

S. nipponica의 주요생육지 (Fig. 1)에서 population sampling (population당 20개체 이상)에 의해 얻어진 석엽표본으로부터 종래의 분류에서 사용되었던 형질을 포합한 25 항목의 외부형 태를 조사하여, 이들 population간의 형태적 분화를 추정하였다(Im, 1987, 1989). 유전적 분 화를 추정하기 위해서, 각 population에서 채집한 식물들을 동일한 환경하에 재배하여 전기 영동의 재료로 사용하였다. PGI, PGM, TPI, LAP, SkDH, ACN 의 6효소종류에 관여하는 10 유전자좌에서의 유전자빈도에 근거하여 population간의 유전적 거리(D)를 계산하였다 (Im, in prep.). 총포 (involucre) 와 총포편 (involucral bracts) 의 모양, 두화의 배열상태등의 외부형태 에 대해 조사하였다. S. nipponica ssp. yoshinagae와 ssp. hokurokuensis에서 보이는 형태적 분화와 유전적 분화를 비교하고, 두 측면에서 보이는 서로 다른 결과를 두 아종의 생태적 특 징과 지리적 분포를 고려하여 해석하였다.

결과 및 고찰

1) S. nipponica ssp. yoshinagae (Kitamura) Kitamura (Plate B)

이 분류군은 Kitamura(1934)에 의해 S. yoshinagae라는 이름으로 발표되었는데, Ohwi (1953, 1965a, b)와 Lipschitz(1979)는 S. nipponica와는 별도의 종으로 춰급하고 있다. 특히

Fig. 1. Localities of 30 populations explored, and distribution range of S. nipponica and S. sugimurai. '1, Hiraniwa-kogen (900 m); 3, Mt. Himegami (850 m); 4 Mt . Oikami (100 m); 5, Ogonzaki (15 m); 6, Nyudo-zaki (20 m); 7, Misaki-toge (20 m); 8, Senzoku-iwa (10 m); 9, Saio-ji (100 m); 10, Tochidaira (600 m); A, Sendai (120 m); B, Mt. Hubo (850 m); C, Mt. Tenmyo (400 m); D, Mt. Yamizo (600 m); E, Mt. Takahara (700 m); F, Nikko (850 m); G, Karuizawa (950 m); H, Mt. Kintoki (700 m); I, Abetoge (1,400m); J, Mt. Ryozen (800 m); K, Tentaki (450 m); L, Mt. Hyonosen (1,300m); M. Takahoko (850 m); N. Mt. Togu (900 m); O, Mt. Tsurugi ($1,920 \mathrm{~m}$); P, Mt. Tebako (1,750m); R, Mt. Ishizuchi $(1,900 \mathrm{~m})$; S, Mt. Tara (900 m); T, Mt. Shiraiwa ($1,640 \mathrm{~m}$); U, Mt. Wanitsuka ($1,050 \mathrm{~m}$) Y, Mt. Nagata ($1,880 \mathrm{~m}$).

세계의 Saussurea 속을 집대성한 소련의 Lipschitz(1979)는 타원형 잎을 가진 S. yoshinagae 를 Subsect. Saussurea (Sect. Saussurea) 에, 심장형 잎을 가진 S nipponica 를 Subsect. Cordifoliae (Sect. Saussurea) 에 위치시킴으로서, 두 분류군을 확연히 다른 종으로 인식하였 다. 그러나 Kitamura(1950b)가 자세한 언급 없이 이 분류군을 S. nipponica의 아종(S. nipponica ssp. yoshinagae (Kitamura) Kitamura, comb. nud.) 으로 rank를 떨어뜨려 취급한 이래, Hara(1952), Kitamura et al. (1957) 은 이 변경된 Kitamura의 견해에 따르고 있다.
Ssp. yoshinagae는 Shikoku의 사문암지대에만 분포하는 유존식물 (relic species) 로서 깊게 결각이 지기도 하는 숙존성 근생엽, 타원형의 경생엽, 엽병에 발달하는 넓은 wing, 잎 뒷면 의 실처럼 긴 털, 길게 발달하는 화서축의 끝에 성기게 불는 두화 등의 특이한 외형으로 S. nipponica의 타아종들과 쉅게 구별된다(Im, 1989). 그러나 효소다형에 근거한 유전적 분화의 조사결과, ssp. yoshinage와 지리적으로 인접한 서남일본의 ssp. nipponica(Plate A), ssp. shikokiana와의 유전적 거리는 그다지 멀지 않은 것 $(\mathrm{D}=0.09)$ 으로 나타났다 (Fig. 2) , 고등식 물의 경우 종내 population간 (intraspecies) 의 유전적 거리 (D)는 0.17 이하라는 Crawford (1983) 의 견해에 따르면, ssp. yoshinagae는 아직 종의 level로 까지의 분화를 이루지는 못한 것으로 추정된다. 이는 또한 Ssp. yoshinagae의 population이 S. nipponica의 다른 population 들로 부터 격리된 후, 그다지 많은 시간이 경과하지 않았음을 의미하고 있다. 비슷한 유전적 거리에 있는 서남일본의 S. nipponica의 타아종들(ssp. nipponica, ssp. shikokiana)이 외형에 있어서 확연히 구별되지 못하고 있는데 비해 (Im, 1987), ssp. yoshinagae만이 별종으로 다루 어질 정도로 특수한 외형을 가지게 된 이유는 사문암지대라는 특수한경에 적옹하는 과정에서 급속한 형태적 분화를 이룬 때문으로 추정된다. 사문암지대에는 ssp. yoshinagae 이외에도 인 접한 지역의 분류군에 대응하는 식물들 (Heteropappus leptocladus Matsumura, Gymnaster savatieri ssp. pygmaeus Kitamura 등)이 유존하고 있는 예가 보고되고 있다(Kitamura, 1950b).

Saussurea속의 분류에 있어서 중요한 형질중의 하나로 생각되어지는 총포 및 총포편의 형 태를 비교해 보면 ssp. yoshinagae는 ssp. nipponica와 매우 유사함을 알 수 있다(Fig. 3). 이 분류군을 S. nipponica에 편입시킨 Kitamura(1950b) 의 견해는, 주로 외형과 생태적, 지리적 특징에만 의존했던 당시의 연구상황을 생각해 볼 때, 에리한 관찰과 깊은 통찰만으로도 자연 의 참모습에 근접할 수 있다는 줗은 보기라고 하겠다.
2) S. nipponica ssp. kokurokuensis Kitamura (Plate C)

이 식물은 Kitamura (1935)에 의해 S. muramatsui로서 발표 되었는데, 그후 Kitamura (1950a)는 S. muramatsui를 둘로 나누어 이들올 S. nipponica의 아종 (ssp. hokurokuensis와 ssp. muramatsui)으로 각각 편입시겼다. S. nipponica ssp. hokurokuensis에 대한 견해는 Ohwi(1953, 1956a,b) Lipschitz(1979), $\operatorname{Im}(1989)$ 등에 의해 지지되고 있다. 그러나 Lipschitz (1979) 와 Im (1989) 은 ssp. muramatsui를 Tohoku 지방의 S. sugimurai Honda (Plate D) 로 인식하고 있다.

Nei's standard genetic distance

Fig. 2. Phenogram showing genetic distance of 30 populations based on Nei's genetic distance. Symbols correspond to those in Fig. 1.

Fig. 3. Representative shape of involucre and involucral bracts. Five involucral bracts within an typical involucre in each taxon are arranged in order from outermost bract (left) to innermost one (right). Some involucral bracts with recurved tip (left in each pair)are straigh ten in order to exhibit their actual length (right).
A, S. nipponica ssp. nipponica; B, S. nipponica ssp. yoshinagae; C, S. nipponica ssp. hokurokuensis; D, S. sugimurai.
S. nipponica ssp. hokurokuensis는 동해에 면한 Hokuriku 지방의 해안지대 (바닷가 절벽에 서부터 인접한 산지까지)에 분포하는 식물로, 넓고 큰잎, 줄기와 엽병에 발달하는 wing, 1 m 가 넘는 초장, 다수의 두화를 가진 큰화서 등의 전체의 외관은 Shikoku와 Kyushu의 1,000 m 이상의 산지 정상 부근의 ssp. shikokiana나 ssp. higomontana와 유사하다. 그러나 화서 위의 두화들이 배게 배열된 점, 표피세포의 크기가 크고, 총포 및 총포편에 단세포의 털이 많은 점, 잎에 털이 거의 없는 점 등으로 다른 아종으로부터 확연히 구별되고 있다 (Im, 1989). 이상과 같은 높은 형태적 분화에도 불구하고 ssp. hokurokuensis와 Kanto지방의 ssp. savatieri, Yakushima의 ssp. yakushimensis와의 유전적 거리 $(\mathrm{D}=0.09)$ 는 종내 분류군의 수준 에 머물고 있다(Fig. 2). 이는 S. nipponica의 일부 population이 Hokuriku 지방에 격리된 후, 눈이 많은 해안 지대의 한경에 적응하여 급속한 형태적 분화를 일으킨 것으로 보여진다.
S. nipponica의 다른 아종들에서는 볼 수 없는 ssp. hokurokuensis의 전술한 형태적 톡징들 은 지리적으로 인접해 있는 S. sugimurai (S.nipponica ssp. muramatsui Kitamura를 포함한) 에서도 나타는 것들로, Kitamura(1935)가 ssp. hokurokuensis 를 S. muramatsui의 한 형태로 생각했었던 이유도 여기에 있었다. 그러나 이들의 유전적 분화정도를 보면, ssp. hokurokuensis와 S. sugimurai는 보통 종간(interspecies)에서 보이는 정도의 큰 유전적 거리 ($\mathrm{D}=$ 0.195) 를 나타내는데 (Fig. 2), 이는 S. sugimurai를 별종으로 취급한 Lipschitz(1979) 와 Im (1989) 의 견해를 지지한다. S.sugimurai의 생육지인 Tohoku 지방도 Hokuriku 지방과 함께 일본 유수의 다설지방으로, S. sugimurai와 ssp. hokurokuensis에서 보여지는 몇몇 형태적 유 사점은 이들 서로 다른 분류군의 동일한 환경에 적응한 결과로서의 수렴현상 (convergence) 으로 해석된다.

이들 두 분류군의 총포 및 총포편의 외형은 ssp. hokurikuensis가 ssp. nipponica와 마찬가 지로 긴 내편과 현저히 짧은 외편을 가지는데 비해, S. sugimurai의 내편과 외편의 길이는 그다지 다르지 않다(Fig. 3). S. nipponica ssp. yoshinagae의 경우에서도 보았듯이, 추포 및 총포편의 특징은 다른 외부 형태에 비해서 환경에 의한 변화가 적은 보다 안정된 형질로, 분 류군간의 근본적 (유전적) 다롬을 보다 잘 반영하고 있는 것으로 추정된다.
일본의 기후는 Ulm빙기 이후, 아한대 (약 $60,000-42,000$ 년 전), 냉온대 ($42,000-25,000$ 년 전), 아한대 $(25,000-10,000$ 년전), 그리고 온대 (10,000 년전 이후)로의 변동을 거쳤는데, 이 과정에서 북방계의 식물들은 고산지대, 사문암지대, 다설지대 등의 특수한 환경에 고립되게 되었다 (Shinbori and Shibasaki, 1982). S. nipponica에 있어서도 이같은 지리적, 생태적 격 리현상이 보여지는데, ssp. yoshinagae와 ssp. hokurokuensis는 S. nipponica의 다른 population들로부터 비교적 최근 (일본의 기후가 현재와 같이 온난하게 되었을 즈음)에 격리되어, 특수한 환경하에서 급속한 형태적 분화를 일으킨, 종분화 과정중의 아직 젊은 분류군으로 추 정된다. S. nipponica ssp. yoshinagae와 ssp. hokurokuensis의 충분한 유전적 분화를 수반하지 않는 높은 형태적 분화의 예도, 지리적, 생태적으로 톡수한 환경 (사문암지대, 석회암지대, 다설지대, 다습지대 등)에 격리된 population들이 각각의 환경에 적옹하는 과정에 있어서 단 시간에 급속한 형태적 분화를 이롤 수 있다는 비약적 종분화 (quantum speciation; Tateoka,

1983 참조) 의 줗은 보기로 생각되어진다. S. nipponica의 7아종의 전체적 종분화에 관해서는 다른 논문에서 보다 상세히 다루어 질 것이다(Im, in prep.).

적 요

지리적, 생태적으로 다양하게 분화한 S. nipponica의 7아종중, ssp. yoshinagae와 ssp. hokurokuensis의 종분화과정을 형태적, 유전적 측면에서 해석하였다. Ssp. yoshinagae는 사문 암지대에, ssp. hokurokuensis는 눈이 많은 해안지대에 각각 적응진화한 분류군으로 다른 아 종에서는 볼 수 없는 톡이한 외형을 발달시켰으나, 그에 상응하는 유전적 분화는 아직 이루 지 못하고 있다. 이는 이 두 아종이 S. nipponica의 다른 population들로부터 격리되어, 특 수한 환경하에서 급속한 형태적 분화를 이룬 비약적 종분화 (quantum speciation) 의 결과로 추정둰다. 또한 ssp . hokurokuensis는 인접해 분포하는 S. sugimurai와 많은 형태적 유사점을 갖는데, 이는 서로 다른 두분류군이 다설지대라는 특수환경에 적응하는 과정에서 보여지는 수렴현상 (convergence) 으로 생각되다.

인 용 문 헌

이창복. 1982. Saussurea. 대한식물도감. pp. 770-777. 향문사.
Crawford, D.J. 1983. Phylogenetic and systematic inferences from electrophoretic studies. In: S.O.
Tanksley and T.J. Orton (eds.), Isozymes in Plant Genetics and Breeding, pt. A. 257-287. Elsevier, Amsterdam.

Hara, H. 1952. Saussurea. In: A bibliographic enumeration of flowering plants indigenous to or long cultivated in Japan and its adjacent islands (Pars Secunda), pp. 239-252. Iwanami Shoten, Tokyo. (in Japanese).
Im, H.T. 1987. Principal component analysis on morphological variation in the Saussurea nipponica complex (Compositae). P1. Sp. Biol. 2: 117-126.
___ 1988. Taxonomic studies of the Saussurea nipponica complex (Compositae). Ph. D. Thesis. Tokyo University.
___ 1989. Taxonomic revision of the Saussurea nipponica complex (Compositae). J. Fac. Sci. Univ. Tokyo. Sec. III, Vol. XIV, No. 4: 243-272.
\qquad (in prep.) Electrophoretic study of taxonomic relationships in the Saussurea nipponica complex.
Kitamura, S. 1934. Compositae Novae Japonicae VI. Acta Phytotax. Geobot. 3:97-111.
\qquad 1935. Les Saussurea du Japan: Leur classification et leur distribution. Acta Phytotax. Geobot. 4:1-14.
_1950a. Saussurea. In: Icon. Pl. As. Orient. 5(1): 468-475. 1950b. adaptation and isolation on the serpentine areas. Acta Phytotax. Geobot. 12:178-185. (in Japanese).
, G. Murata, and Y. Hori. 1957. Saussurea. In: Coloured illustration of herbaceous plants of Japan I (Sympetalae), pp. 24-29. Hoikusha, Osaka. (in Japanese).

Lipschitz，S．1979．Genus Saussurea DC．：192－193．Nauka，Leningrad．
Nei，M．1972．Genetic distance between populations．Amer．Nat．105：385－398．
Ohwi，J．1953．Saussurea．In：Flora of Japan，pp．1229－1231．Shibundo，Tokyo．（in Japanese）．
＿1965a．Saussurea．In：Flora of Japan．rev．ed．，pp．1387－1397．Shibundo，Tokyo．（in Japanese）．
＿＿＿1965b．Saussurea．In：Flora of Japan．Eng．ed．，pp．913－918．Smithsonian Institution，Washin－ ton，D．C．
Shinbori，T．and T．Shibazaki（新堀友行，柴崎達雄）1982．第附紬．pp．83－99．其立出版株式侖施，東京．
Tateoka．T（館岡亞緒）．1983．植物の種分化を分類．pp．83－99．養蘋堂，東京

Explanation of plate

A，Saussurea nipponica Miq．ssp．nipponica（Sacaguchi 31，TI）
B，Saussurea nipponica Miq．ssp．yoshinagae（Kitam．）Kitam．（Im 2393，TI）
C，Saussurea nippoinca Miq．ssp．hokurokuensis Kitam．（Im 5115，TI）
D，Saussurea sugimurai Honda（Sugimura，holotype TI）

B

C

D

[^0]: 서 론

 취나물속 (Genus Saussurea) 은 북반구, 특히 아시아의 산지에 널리 생육하고 있는 국화과

