금강초롱（Hanabusaya asiatica Nakai）의 초롱꽃科內花粉學的 類緣關係
 李相泰•安暎美•朴騎龍
 （成均館大學校 理科大學 生物學科）

Palynological relationship of Hanabusaya asiatica Nakai within the Campanulaceae

Sangtae Lee，Young Mee An，and Ki Ryong Park
（Depatment of Biology，Sung Kyun Kwan University，Suwon 170）

Abstract

To see the relationships of the Korean endemic genus Hanabusaya among the fami－ ly，pollen grains of 7 genera and 14 species of the subfamily Campanuloideae were in－ vestigated by light and scanning electron microscopy．The species were divided into three groups on the basis of apertural character：9－10－colpate（Codonopsis）， 5－6－colporate（Platycodon），and 3－6－porate（the rest of the genera）．On the basis of sculpturing pattern，the last group was further divided into rugulate but the rugular tips erected（Adenophora），and regulate with ridges or lumina（Campanula and Hanabusaya）．Interspecific differences were found among Adenophora and Cam－ panula．The palynological study suggests that Hanabusaya is the closest to Campanula， especially closer to C．punctata than other Campanula species to it．

적 요

한국 특산인 금강초롱의 유연관계를 파악하기 위하여 초롱꽃과의 초롱꽃아과에 속하는 7속 14 종의 화분을 광학 및 주사전자현미경으로 조사하였다．조사한 종들은 발아구가 $9-10$ 구형인 더덕속，5－6공구형인 도라지속，3－6공형인 나머지속으로 대별되었고，3－6공형 속들은 표 면무늬에 의해 난선상인 영아자속，난선돌기가 서로 붙고 편평해진 애기도라지속，난선돌기 끝이 직립한 잔대속，난선돌기가 서로 응합되나 틈이 발달된 금강초롱속과 초롱꽃속으로 나뉘

었다．그리고 잔대 초룽꽃 속내에서는 종간의 차이도 나타났다．금강초롱은 초롱꽃과 화분특 징이 가장 비슷하고 초롱꽃속 내 좋간 차이보다 더 가까와 화분학적으로는 속으로의 분리가 재고되어야 할 것으로 나타났다．

서 론

금강초롱（Hanabusaya asiatica Nakai）은 Nakai（1909）가 Symphyandra asiatica Nakai 로 신종 발표했던 것을，근생엽이 없고 잎이 줄기상부예 모여 나며 악편이 작고 분리되는 특징이 달라 신속으로 숭격처리（Nakai 1911）시킨 것으로 후에 추가된 검산초롱（H．latisepala Nakai）과 함 께 2종이 한국특산으로 알려졌다．Nakai（1911）는 한국산 초롱꽃과의 속의 검색표를 통해 약이 융합되는 금강초롱속이 그렇지 않은 다른 속들과 동떨어진 것으로 보았다．이（1969）는 꽃의 형 태에 있어 모시대（Adenophora remotiflora）와 가장 유사하다고 하였고 이후 본 속에 대해서는 식물목록（정－이 1963，문교부 1967，Lee 1984），식물지（박 1973），도감（정 1958，이 1980）등 에 포함된 이외 따로 연구된 바 없어 과연 신속으로의 처리가 타당한지，어떤 종으로부터 유 래⿰⿰\zh9丿人ㅆㄴㄴㄴㅈㅣ，어느 속과 유연관계가 깊은지 등 논의의 여지가 딶다．문헌에 의하면 본 속의 근연 속을 Symphyandra로 보아 초롱꽃，잔대，영아자속들과 유연관계가 깊은 것으로 보이나（Ben－ tham \＆Hooker 1862－1883，Engler 1964），이를 확인하기 위해서는 근대적인 접근이 필요하 다．

화분학적인 연구는 기존분류를 평가 수정하는데 많은 기여를 해왔고（Hedberg 1946，Walker \＆Doyle 1975）이는 전자현미경의 이용으로 더욱 활발해졌다（Graham \＆Barker 1981，이 1984）．본 과의 화분학적 연구는 $\operatorname{Erdtman}(1966)$ 에 의해 정리된 바 있다．초롱꽃과－초롱꽃아과 에 속하는 한국산 식물은 6공구형 발아구를 갖는 도라지속，7－9구 형 발아구를 갖는 더덕속， （2）-3 －（5）공형 발아구를 갖는 애기도라지，잔대，초롱꽃，영아자속들로 나누어 꽃의 형태에 의한 유연관계에 의해 금강초롱속도（2）－3－（5）공형 발아구를 가질 것으로 추측된다．

본 연구에서는 금강초롱을 포합한 초롱꽃과 식물의 화분을 조사함으로서 한국 특산식물인 금강초롱의 근연식물을 밝히고 아울러 한국산 초롷꽃과 속，종들 간의 유연관계를 조사함으로 서 미진했던 본 과 식물의 계통분류학적 연구를 수행하며 화분학적 특징의 분류학적인 가치를 확인하고져 한다．

재료 및 방법

본 실헙에 사용된 재료는 설악산，지리산，화악산 둥지에서 채집하 표본과 성균관대학교 식 물표본실의 표본을 이용하였다（Tab．1），화분은 개정된 Erdtman（이 1983）의 방법으로 초산분 해하였고 glycerine jelly 에 매몰시켜 영구표본을 만들어 광학현미경으로（Laborux 12）관찰하 였고（ 600 배， 1500 배），표면의 미세구조의 관할을 위해서는 초산분해된 화분울 시료판위에 올 려 ion sputter（JEOL JEC－1100）를 사용하여 $\mathrm{Au}-\mathrm{Pd}$ 로 7 분간 포매한 후 주사전자현미경（JEOL

Table 1．Collection data of some campanulaceous species．

Specific name（Korean name）		Locality	Date
Adenophora coronopifolia（둥근 잔내）		Mt．Halla	Aug．4，1960＊
		Mt．Halla	Aug．9，1958＊
A．divaricata var． manshurica	（넓은잔대）	Kwangneung，Kyongki	Oct．14，1954＊
		Kayasan，Kyongbuk	Aug．24，1956＊
		Dukyoosan，Jonbuk	Aug．2，1959＊
A．grandiflora	（도라지모시대）	Hwaaksan，Kyongki	Aug．24， 1985
A．triphylla var．japonica	（잔대）	Hwaaksan，Kyongki	Aug．24， 1985
A．remotiflora	（모시대）	Soyosan，Kyongki	Sep．11，1960＊
		Kayasan，Kyongbut	Aug．15，1959＊
A．radiatifolia	（충층잔대）	Kwangneung，Kyongki	Oct．14，1954＊
Campanula punctata	（．초롱꽃）	Mt．Sorak	Aug．31， 1985
		Chunmasan，Kyongki	Jun．11，1965＊
C．takesimana	（섬초롱꿏）	Is．Ulneung	Aug．8， 1985
C．glomerata var．dahurica	（자주꽃방망이）	Soyosan，Kyongki	Sep．11，1960＊
		Koonjasan，Chungbuk	Aug．17，1959＊
Hanabusaya asiatica	（금강초롱꽃）	Mr．Sorak	Aug．31， 1985
Phyteuma japonicum	（영아자）	Hwaaksan，Kyongki	Aug．24， 1985
Wahlenbergia marginata	（애기도라지）	Mt．Halla	Jul．20，1954＊
Codonopsis lanceolata	（더덕）	Mt．Jiri	Jul．28， 1985
		Wolaksan，Chungbuk	Oct．9，1959＊
Platycodon grandiflorum	（도라지）	Mt．Jiri	Jul．28， 1985

＊Samples taken from the specimens of Sung Kyun Kwan University Herbarium．
$120 \mathrm{EX}-\mathrm{SEM}$ ）으로 관찰하였다 $(40 \mathrm{KV}, 15000$ 배， 2000 배）．측정에 있어 자상돌기 수는 SEM 사진으로부터，나머지 특징은 광학현미경으로 하였고，사용된 용어는 Faegri \＆Iversen（1964） 을 채택하였다．

결 과

본 연구로 초롱꽃과의 화분은 형태가 다양하여 광화분형（eurypalynous）이라는 것을 재확인 하였고 특히 주사현미경의 이용으로 표면무늬의 종간 차이가 상당히 있음을 알았다．조사한 결 과는 Figs．1－24와 Tab． 2 에 나타내었다．

〈종의 기재〉

더덕（Codonopsis lanceolata（S．et Z．）Trautv．）：화분립의 크기는 적도면의 지름이 33．6～ （36．18）$-39 \mu m$ 아고 극축길이는 $27.0 \sim(27.30) \sim 28.5 \mu m$ 인 아단구형（亜短球形）내지 단구형 （短球形）이다 $(\mathrm{P} / \mathrm{E}=0.91 \sim 0.98$ ）．발아구는 9,10 궁（溝型）이며 표면에는 자상돌기가 있으

며（ 17 개 $/ 100 \mu \mathrm{~m}^{2}$ ）미세한 천공이 뚫려있고 구구（溝口）주변에는 자상돌기가 조밀하게 몰려있 다（Figs．1，2）．화분벽의 두께는 $1.5 \sim(2.01) \sim 2.4 \mu m$ 이다．
도라지（Platycodon grandiflorum（Jacq．）A．DC．）：화분립의 크기는 적도면의 지름이 $48.0 \sim$ （54．2）$\sim 55.5 \mu \mathrm{~m}$ 이고 극축길이는 $43.6 \sim(44.78) \sim 54.18 \mu \mathrm{~m}$ 인 아단구형 $(\mathrm{P} / \mathrm{E}=0.78 \sim 0.82)$ 이 다．발아구는 대부분이 6 구형이며 드물게 5 구형도 있다．표면은 대개 평활상이나 드문드문 미 세한 천공이 뚫려있고 약간씩 불규칙하게 돌출되어 있는 표면위에 미세한 자상돌기가 있다 $(20$ 개정도 $/ 100 \mu m^{2}$ ）．화분벽의 두께는 $2.67 \mu m$ 정도이다（Figs．3，4）．
애기도라지（Wahlenbergia marginata（Thunb．）A．DC．）：화분립의 크기는 적도면의 지름이 34.5 $\sim(37.5) \sim 40.0 \mu \mathrm{~m}$ 이고 극축의 길이는 $31.5 \sim(33.51) \sim 34.5 \mu \mathrm{~m}$ 인 약단구형（弱短球形）내지 아 단구형 $(\mathrm{P} / \mathrm{E}=0.84 \sim 0.96$ ）이다．발아구는 대부분이 3 공형（ 3 孔型）이며 드물게 4 공형이 있다．공 구（孔口）는 원형이며 난선상 표면위에 자상돌기가 돌출하며（ 42 개 $/ 100 \mu m^{2}$ ）표면은 다소 굴곡 이 진다（Figs．5，6）．화분벽의 두께는 $1.2 \sim(1.68) \sim 2.4 \mu m$ 이다．

영아자（Phyteuma japonicum Miq．）：화분립의 크기는 적도면의 지름이 27．0～（31．20）～33．0 μm 이고 극축길이는 $25.5 \sim(27.0) \sim 31.2 \mu m$ 인 약단구형 내지 아단구형（ $\mathrm{P} / \mathrm{E}=0.80 \sim 0.90$ ）이 다．발아구는 4 공형이 대부분이며 드물게 3,5 공형도 있다．공구 주변은 약하게 비후되어 있 으며 뚜렷한 난선상 표면위에 자상돌기（약 13 개 $/ 100 \mu m^{2}$ ）가 돌출되어 있다（Figs．7，8）．화분벽 의 두께는 $1.2 \sim(1.62) \sim 2.0 \mu \mathrm{~m}$ 이다．

금강초룽（Hanabusaya asiatica Nakai）：화분립의 크기는 적도면의 지름이 36．0～（39．22）～ $40.5 \mu \mathrm{~m}$ 이고 극축길이는 $31.5 \sim(33.0) \sim 36.0 \mu m$ 인 아단구형 내지 약단구형이다．발아구는 5 공 형이 대부분이고 드물게 6 공형이 있다．공구는 원형이고 외표벽，내표벽이 모두 비후되어 있

Table 2．Collection data of some campanulaceous species in Korea．

Specific name	Polar length	Equatorial diameter	P／E	Exine thick	Aperture type	Echina no．
Adenophora coronopifolia	30.30 ± 0.35	34.20 ± 1.64	0．83－0．93	1.59	4 p	13
A．divaricata var．manshurica	33.00 ± 1.64	37.50 ± 2.24	0．81－0．91	1.68	4（5）p	？？
A．grandiflora	33.38 ± 0.75	36.98 ± 1.18	0．88－0．92	2.19	（3） 4 p	8
A．triphylla var．japonica	33.30 ± 3.27	37.25 ± 2.16	0．84－0．94	1.80	4p	10
A．remotiflora	34.90 ± 1.65	38.10 ± 1.42	0．85－0．93	2.34	3，4p	10
A．radiatifolia	32.50 ± 2.29	34.92 ± 1.25	0．91－0．96	1.74	4，5p	8
Companula punctata	26.85 ± 2.27	28.54 ± 1.86	0．91－0．95	1.38	3（4）p	13
C．takesimana	27.83 ± 2.21	28.56 ± 2.63	0．85－0．98	1.44	3p	11
C．glomerata var．dahurica	25.50 ± 1.50	27.30 ± 1.64	0．89－1．00	1.56	3（4）p	21
Hanabusaya asiatica	33.00 ± 2.60	39.21 ± 2.51	0．78－0．89	1.74	5，6p	16
Phyteuma japonicum	27.00 ± 1.06	31.20 ± 2.53	0．80－0．90	1.62	（3）4（5）p	13
Wahlenbergia marginata	33.50 ± 1.73	39.50 ± 2.21	0．84－0．96	1.68	3（4）p	42
Codonopsis lanceolata	27.30 ± 0.67	36.18 ± 2.70	0．69－0．82	2.01	9，10c	17
Platycodon grandiflorum	44.78 ± 2.49	54.19 ± 3.62	0．78－0．82	2.67	（5） 6 cp	20

다. 표면은 미세한 난선상인데 난선돌기 사이에 틈이 있으며 자상돌기 (약 16 개 $/ 100 \mu m^{2}$)가 있 다(Figs. 9, 10). 화분벽의 두께는 $1.5 \sim(1.74) \sim 2.4 \mu \mathrm{~m} \quad \mu m$ 이다.
초롱끛 (Campanula punctata Lam.) : 화분립의 크기는 적도면의 지름이 $25.8 \sim(28.54) \sim 31.5$ μm 이고 극축길이는 $24.0 \sim(26.85) \sim 30.0 \mu m$ 인 약단구형 $(\mathrm{P} / \mathrm{E}=0.91 \sim 0.98)$ 이다. 발아구는 대 부분이 3 공형으로서 드물게 4공형도 있다. 공구 주변은 외표벽, 내표벽이 모두 비후되어 있으 며 공구는 원형이고 표면은 미세한 난선상이며 틈은 금강초롱에 비해 약간 좁고 자상돌기가 있 다(약 13 개 $/ 100 \mu m^{2}$). 화분벽의 두꼐는 $1.2 \sim(1.38) \sim 1.5 \mu m$ 이다 (Figs. 11, 12).

섬초롱꽃(Campanula takesimana Nakai) : 화분립의 크기는 적도면의 지름이 27.0~(28.56)~ $32.1 \mu \mathrm{~m}$ 이고 극축의 길이는 $25.5 \sim(27.83) \sim 30.0 \mu \mathrm{~m}$ 인 약단구형 내지 아단구형이다 $(\mathrm{P} / \mathrm{E}=0.85$ ~0.98). 발아구는 3 공형이며 공구는 원형으로 표벽이 비후되어 있다. 미세한 난선상 표면위 에 자상돌기가 돌출되어 있고(약 11 개 $/ 100 \mu \mathrm{~m}^{2}$) 난선돌기가 서로 융합하여 초롱꽃보다 틈이 더 욱 좁아져 크기가 비슷한 미세한 천공을 형성한다(Figs. 13, 14). 화분벽의 두께는 $1.2 \sim(1.44)$ $\sim 1.8 \mu \mathrm{~m}$ 이다.
자주꽃방망이 (Campanula glomerata var. dahurica Fisch.) : 화분립의 크기는 적도면의 지름 이 $25.5 \sim(27.30) \sim 30.0 \mu \mathrm{~m}$ 이고 극축길이는 $24.0 \sim(25.50) \sim 27.0 \mu \mathrm{~m}$ 인 약단구형 내지 구형 (球形) 이다 $(\mathrm{P} / \mathrm{E}=0.89 \sim 1.00)$. 발아구는 대부분이 3 공형이며 드물게 4 공형이 있다. 공구는 원형이며 주변은 비후되어 있다. 난선상 표면위에 자상돌기가 돌출되어 있으며 (약 21 개 $/ 100 \mu m^{2}$) 난선 돌기가 융합하고 틈이 확대되어 생긴 불규칙한 모양의 천공이 분포한다(Figs. 15, 16). 화분벽 의 두께는 $1.5 \sim(1.56) \sim 2.1 \mu m$ 이다.

잔대 (Adenophora triphylla var. japonica Hara) : 화분립의 크기는 적도면의 지름이 25.5~ (37.25) $\sim 39.0 \mu m$ 이고 극축길이는 $27.6 \sim(33.0) \sim 35.4 \mu m$ 인 약단구형 ($\mathrm{P} / \mathrm{E}=0.84 \sim 0.94$) 이고 발아구는 4 공형이며 공구 주변은 비후되어 있다. 표면은 난선상인데 표면위에 난선돌기 끝이 서있고 (약 126 개 $/ 100 \mu m^{2}$) 자상돌기가 돌출되어 있다(약 10 개 정도 $/ 100 \mu m^{2}$). 화분벽의 두께는 $1.5 \sim$ (1.8) $\sim 2.4 \mu \mathrm{~m}$ 이다(Figs. 17, 18).

도라지모시대 (Adenophora grandiflora Nakai) : 화분립의 크기는 적도면의 지름이 36.0~(36. $99) \sim 38.4 \mu \mathrm{~m}$ 이고 극축길이는 $33.0 \sim(33.38) \sim 34.5 \mu \mathrm{~m}$ 인 약단구형 $(\mathrm{P} / \mathrm{E}=0.88 \sim 0.92)$ 이다. 발 아구는 대부분이 4공형이며 드물게 3공형도 있다. 공구는 원형이며 표벽이 비후되어 있다. 표 면은 난선상인데 난선돌기 끝이 직립하고 (약 63 개 $/ 100 \mu m^{2}$) 군데군데 자상돌기 (약8개 $/ 100 \mu m^{2}$) 가 돌출되어 있다(Figs. 19, 20). 화분벽의 두께는 $1.8 \sim(2.19) \sim 2.4 \mu \mathrm{~m}$ 이다.

모시대(Adenophora remotiflora (S. et Z.) Miq.) : 화분립의 크기는 적도면의 지름이 $26.0 \sim(38.1)$ $\sim 39.0 \mu \mathrm{~m}$ 이고 극축의 길이는 $33.0 \sim(34.9) \sim 35.7 \mu \mathrm{~m}$ 인 약단구형 내지 아단구형 $(\mathrm{P} / \mathrm{E}=0.85$ ~ 0.93)이다. 발아구는 3 공형 내지 4 공형이며 공구 주위는 매우 비후되어 있다. 표면은 난선상 이나 난선돌기의 끝이 도라지모시대보다 덜 직립하고 (약 48 개 정도 $/ 100 \mu m^{2}$) 군데군데 자상돌 기 (약 8 개 $/ 100 \mu m^{2}$) 가 있다(Figs. 21, 22). 표벽의 두께는 $2.1 \sim(2.31) \sim 2.7 \mu m$ 이다.

충충잔대 (Adenophora radiatifolia Nakai) : 화분립의 크기는 적도면의 지름이 35.1~(35.55) $\sim 36.0 \mu \mathrm{~m}$ 이고 극축의 길이는 $30.0 \sim(34.92) \sim 36.0 \mu \mathrm{~m}$ 인 약단구형 $(\mathrm{P} / \mathrm{E}=0.91 \sim 0.96)$ 이다. 발 아구는 4~5공형이며 표벽이 비후되어 있다. 표면은 난선상인테 난선돌기 끝은 직립하나 그 수

는 적다 (40 개 정도 $/ 100 \mu m^{2}$) , 군데군데 자상돌기가 있고 그 수도 역시 적은 편이다 (8개 $/ 100$ $\left.\mu m^{2}\right)$. 화분벽의 두께는 $1.2 \sim(1.74) \sim 2.4 \mu m$ 이다(Fig. 23, 24).

넓은잔대 (Adenophora divaricata var. manshurica Kitagawa) : 화분립의 크기는 적도면의 지 름이 $33.0 \sim(37.5) \sim 36.0 \mu m$ 이고 극축길이는 $30.0 \sim(33.0) \sim 34.5 \mu m$ 인 아단구형 내지 약단구 형 $(\mathrm{P} / \mathrm{E}=0.81 \sim 0.91)$ 이다. 발아구는 $4 \sim 5$ 공형이며 공구는 원형이고 표벽은 비후되어 있다. 화 분벽의 두께는 $1.5 \sim(1.68) \sim 2.4 \mu m$ 이다.

둥근잔대 (Adenophora coronopifolia Fisch.) : 화분립의 크기는 적도면의 지름이 33.0~(34.20) $\sim 36.0 \mu m$ 이고 극축길이는 $30.0 \sim(30.3) \sim 30.6 \mu m$ 인 아단구형 내지 약단구형 $(0.83 \sim 0.93)$ 이 다. 발아구는 4 공형이며 공구는 원형이고 외표벽과 내표벽이 분리되어 전실(vestibulum)을 이 루고 있다. 화분벽의 두께는 $1.5 \sim(1.59) \sim 1.8 \mu m$ 이다.

〈일반적 톡징과 종•속간의 유연관계〉

한국산 초롱꽃과—초롱꽃아과의 화분은 단립으로 약단구형~단구형 $(\mathrm{P} / \mathrm{E}=1.00-0.69)$ 으로 (Tab. 2. Figs. 1-24), 단구형인 종은 더덕 (Fig. 1) 과 도라지 (Fig. 3)가 있고 나머지 종들은 약 단구형이다. 화분의 극면 적도면 입상은 원형이고, 크기는 가장 작은 것이 초롱꽃(Fig. 11; $26.85 \times 28.54 \mu m$)을 비롯 영아자(Fig. 7), 자주꽃방망이(Fig. 15) 둥이 있고, 가장 큰 것은 도라지 (Fig. 3; $44.78 \times 54.19 \mu \mathrm{~m}$) 이고 나머지 종간에도 상당한 차이가 있다. 발아구는 더덕이 9-10 공구, 도라지는 5-6공구, 그리고 나머지 종들은 3-6공구를 가져 대별되고 각 군내에서 발아 구 형태의 크기는 분명치 않다. 공구의 갯수도 종에 따라 차이가 있으나 군간에 차이는 없고 화분의 차이가 큰 종에서 발아구가 많아지는 경향이 있다. 표면무늬는 기본적으로 자상돌기 (echinate)률 갖는 난선상(rugulate, Faegri \& Iversen의 Sedum rosea type)이고 (Figs. 2-24) 난선돌기(vallae)는 서로 융합되기도 하고(Fig. 16) 돌기 사이의 골(lumina)이 거의 없거나(Fig. 6) 넓기도 하며(Fig. 10) 어떤 경우에는 유공상처럼 되기도 한다(Figs. 12, 14). 또한 돌기 끝이 직립하기도 하고 그 정도는 종에 따라 다양하다(Figs. 18, 20, 22, 24). 그러나 도라지에서는 자 상돌기가 있으나 표면은 뼝활상에 가깝다(Fig. 4),

표면무늬는 속간의 유연관계 파악에 중요한 특징이 된다. 즉 더덕은 유공상을 형성하고 자 상돌기 수도 가장 적어 표면무늬로도 다른 속과 뚜렷이 구별되고(Figs. 1, 2), 도라지는 거의 평활하여 더덕이나 다른 종들과 구별된다(Figs. 3, 4). 3-6궁구를 갖는 종에서 자상돌기는 종 에 따라 수의 차이가 다소 있을 뿐(Tab. 2) 모양이나 크기의 차이는 뚜렷하지 않다. 영아자의 난선돌기는 서로 떨어져 있고 긴 편이다(Fig. 8). 금강초롱은 영아자와 비슷하나 돌기가 서로 붙고 평편한 편이다(Fig. 10). 초롱꽃은 금강초룽과 비슷하나 전체 모양이 약간 소형인 점이 다 르다 (Fig. 12). 섬초롱꽃에서는 돌기가 상당히 융합되고 사이사이에 구멍을 남겨 추문상인 경 향을 띠고 있다(Fig. 14). 자주꽃병망이에는 구멍이 뿰씬 커져 망상의 경향을 띠고 있다(Fig. 16). 한편 애기도라지는 난선돌기들이 서로 융합되고 글이 다소 잚아졌고 전체적으로 편평해서 위의 종들과는 약간 구별이 된다(Fig. 6).

잔대속(Figs. 17-24)의 종에서는 난선돌기의 끝이 곧바로 서서 저배율에서 미립상을 띤다(Figs. $17,19,21,23$). 종에 따라서 직립된 돌기수에 차이가 있어 그 빈도수률 보면 충충잔대, 모시

대, 도라지모시대, 잔대의 순으로 높아지는 것을 불 수 있다(Figs. 18, 20, 22, 24). 화분의 형태에 의해 조사된 속과 종들의 검색표를 작성하면 다음과 같다.

〈검 색 표〉

1. 발아구 9-10구형

더덕

1. 발아구 3-6공형 또는 5-6공구형
2. 발아구 $5-6$ 공구형

도라지
2. 발아구 $3-6$ 공형
3. 난선돌기 의 끝이 곧추선다.
4. 직립한 돌기수가 $100 \mu \mathrm{~m}^{2}$ 당 50 개 이상이다.
5. 직립한 돌기수 약 63 개 $/ 100 \mu \mathrm{~m}^{2}$

도라지모시대
5. 직립한 돌기수 약 126 개 $/ 100 \mu \mathrm{~m}^{2}$ 잔대
4. 직립한 돌기수가 $100 \mu \mathrm{~m}^{2}$ 당 $40-48$ 개이다.
6. 화분 크고 (약 $35 \times 38 \mu \mathrm{~m}$), 공구 $4-5$ 개 모시대
6. 화분 작고 (약 $33 \times 35 \mu \mathrm{~m}$), 공구 $3-4$ 개 충층잔대
3. 난선돌기의 끝이 서지 않는다.
7. 자상돌기 $100 \mu \mathrm{~m}^{2}$ 당 40 개 정도이다. 난선돌기 사이에

틈이 거의 없고 짮으며 전체는 편평하다.
애기도라지
7. 자상돌기 $100 \mu \mathrm{~m}^{2}$ 당 25 개 이하이다. 난선돌기 사이에 틈이 있다.
8. 틈이 좁고 길다.
9. 난선돌기 굵고 화분 크기 약 $33 \times 39 \mu \mathrm{~m}^{2}$

금강초롱
9. 난선돌기 가늘고 화분 크기 약 $27 \times 29 \mu \mathrm{~m}^{2} \cdots \cdots$ 초롱꽃 8. 틈이 넓거나 원형—장타원형이다.
10. 틈이 츱고 자상돌기 11 개정도 $/ 100 \mu \mathrm{~m}^{2}$

섬초롱꽃
10. 틈이 넓고 자상돌기 21 개정도 $/ 100 \mu \mathrm{~m}^{2}$

자주꽃방망이

본 화분학적인 결과로 한국산 초룽꽃과의 초롱쫓아과는 발아구의 특징에 의거 크게 $9-10$ 구 형의 더덕속, 5-6공구형의 도라지속, 그리고 3-6공형의 나머지 속들로 구분된다. 이는 외부 형태적 특징과 대체로 일치하고 있어 애기도라지속 (Wahlenbergia) 을 제외하고는 Engler(1964) 의 분류체계를 지지한다. 즉 더덕속과 애기도라지속은 Wahlenberginae 아족에 도라지는 Platycodonae아족에, 나머지 속들은 Campanulinae아족에 속해, 애기도라지속은 발아구와 표면무 늬 특징으로 보아 Campanulinae아족에 포함시켜야 타당할 것으로 생각된다. 그리고 이같은 결 론은 다른 많은 분류군의 연구에서 화분학의 결과가 크게 공헌한 점으로 보아 (Lee 1984) 중요 성올 간과할 수 없을 것이나 세계에 150 종이나 있는 애기도라지속 중 한 종만 보고 결론짓는 다는 점과, 여러가지 형질에 기초를 뚜어야 자연적인 분류체계를 확립할 수 있다 (Davis \& Hey-
wood 1963)는 점올 생각할 때, 앞으로 더 연구해야 할 것으로 생각된다.
3공형 발아구를 갖는 속들의 분류에 있어 잔대속과 나머지 속들의 분류는 속이상의 분류에 서 지적된 적이 없는 것으로 알고 있는데 세계적으로 조사하여야 확실한 분류학젹 처리를 할 수 있을 것이다.

금강초롱은 약이 융합하고 잎이 줄기 상부에 모여 나는 점으로 다른 속과 구별되나(Nakai 1911,1921) 잎이나 꽃의 일반적인 형태는 초롱꽃(Campanula punctata)이나 모시대(Adenophora remotiflora)와 대단히 비슷하다(Nakai 1909). 꽃의 구조에 있어서 금강초롱 (Hanabusaya asiatica)이 다른 속들과 차이가 있다하더라도 화분형태는 초롱쫓(Campanula punctata)과 너무 닮 아 근연임을 부정할 수 없을 것 같다. 화분형태로는 자주꽃방망이 (C. glomeratavar. dahurica) 를 초롱꽃속으로부터 분리시키는 것은 가능하나, 금강초롱은 초롱꽃이나 섬초룽꽃(C. takesim$a n a)$ 과 아주 가까와 독립된 속으로 처리하지 않는 것이 더 타당할 것 같다. 그러나 전술한 바와 같 이 광범하게 식물을 다루지 않은 점, 여러가지 특징에 근거를 두고 분류를 해야 한다는 점을 감안하여 문제의 제기로 본 연구의 가치가 있다고 생각하는 바이다. 그리고 분류학적인 처리 는 뒤로 미루더라도 확실해진 것 중 하나는 금강초롱속과 가장 가까운 식물은 초롱꽃이란 것 이고 아마도 금강초롱의 기원에 대한 문제도 이를 중심으로 풀어나가야 할 것으로 생각된다.

한편 본 연구에서 다룬 모든 종의 화분형태는 광학 및 전자현미경적으로 모두 식별할 수 있 고 유연관계도 명확하게 규명되어 화분의 톡징이 분류에 열마나 유용하게 적용될 수 있는 지 를 다시 한번 과시해 주었고 (Lee 1984), 본 과의 광범한 화분학적 연구가 필요함을 알 수 있었 다. 더덕속은 7-9구형 발아구를 갖고, 도라지속은 6공구형 발아구를 갖는다는 Erdtman(1966) 의 결과와 본 연구 결과의 약간의 차이도 역시 광범한 연구의 필요성을 역설해 주고 있다. 그 리고 발아구 수와 화분 크기와의 상관관계는 다른 많은 분류군에서의 결과와 잘 일치하고 있 고 (Stuchlik 1967, Koehler 1976, Nowicke 1970, Stone \& Broome 1975) 기능적인 면에서 화분 의 수분ㅎ⿱ㅂ수와 관계있다는 Lee(1978) 를 지지해 주고 있다.

인 용 문 헌

Bentham, G. and J.D. Hooker. 1962(1983). Genera Plantarum. 3 vols., London.
Davis, P.H. and V.H. Heywood. 1963. Principles of Angiosperm Taxonomy. Van Nostrand, New York.
Engler, A. 1964. Syllabus der Pflanzenfamilien. 12th ed., H. Melchior and E. Werdermann (eds.), Gebrueder Borntraeger, Berlin.
Erdtman, G. 1966. Pollen Morphology and Plant Taxonomy. Hafner, New York.
Faegri, K. and J. Iversen. 1964. Textbook of Pollen Analysis. Hafner, N.Y.
Graham, A. and G. Barker. 1981. Palynology and tribal classification in the Caesalpinoideae. Adv. Legume Syst. (eds. R.M. Polhill and P.H. Raven), pp. 801-835.
Hedberg, O. 1946. Pollen morphology in the genue Polygonum s. lat. and its taxonomic significance. Svensk Tidsk. Bd. 40, H. 4: 372-404.

Koehler，E．1976．Pollen dimorphism and heterostyly in the genus Waltheria L．（Sterculiaceae）．Evolu－ tionary Significance of the Exine（eds．I．K．Ferguson and J．Muller），Academic Press，London． pp．147－161．

Lee，S．1978．A factor analysis study of the functional significance of angiosperm pollen．Syst．Bot．3： 1－19．

1984．Contributions of palynological characters to plant systematics．Kor．J．Plant Tax．14： 13－20．

Nakai，T．1909．Plantae novae Asiaticae．Tokyo Bot．Mag．23：185－192．
\qquad ．1919．Flora Koreana，pars seconda．31：59－68．
—＿．1921．Notulae ad Plantas Japoniae et Koreae．XXV．Tokyo Bot．Mag．35：139－153．
Nowicke，J．W．1970．Pollen morphology in the Nyctaginaceae．I．Nyctagineae．（Mirabileae）．Grana 10： 79－98．
Stone，D．E．and C．R．Broome．1975．The Juglandaceae A．Rich．ex Kunth．World Pollen and Spore Flora 4．Almquist \＆Wiksell Period．Co．，Stokholm．
Stuchlik，L．1967．Pollen morphology in the Polemoniaceae．Grana Palynol．7：146－240．
Walker，J．W．and J．A．Doyle．1975．The bases of angiosperm phylogeny．Palynology．Ann．Mo．Bot． Gard．62：664－723．

Lee，T．B．1984．Outline of Korean endemic plants and their distribution．Kor．J．Plant Tax．14：21－32．
문교부．1967．설악산 학술 조사 보고서．
박만규．1973．쌍자엽식물지．정음사
이상태．1983．한국산 나자식물의 계툼분류학적 연구．소나무 속의 화분분류학 생물연구연보． （전북대） $4: 147-156$
\qquad ．1984．한국산 개나리속 식물의 계퉁분류학적 연구．식분지． $14: 87-107$ ．
이우철．1969．한국 특산속 식물에 대하여．식분지．1：14－21．
이창복． 1980 ．대한식물도감．향문사．
점태현．1958．한국식물도감．신지사．
\qquad ，이우철．1963．설악산 식물조사 연구．성대논문집． $8: 231-269$ ．

Figs．1－24．Scanning electron microscopic photographs of some Korean campanulaceous pollen grains （figures of odd numbers）and their surface（figures of even numbers）．All grains $\times 2,000$ except for Fig． 3 （ $\times 1,500$ ），all surface $\times 15,000$ ．Figs．1，2．Codonopsis lanceolata；Figs．3，4．Platycodon grandiflorum；Figs．5，6．Wahlenbergia marginata；Figs．7，8．Phyteuma japonicum；Figs．9，10． Hanabusaya asiatica；Figs．11，12．Companula punctata；Figs．13，14．C．takesimana；Figs．15， 16. C．glomerata var．dahurica；Figs．17，18．Adenophora triphylla var．japonica；Figs．19，20．A． grandiflora；Figs．21，22．A．remotiflora；Fîgs．23，24．A．radiatifolia．

